Coarctation of the Aorta
What the Nurse Caring for a Patient with Congenital Heart Disease Needs to Know

Jo Ann Nieves, MSN, ARNP, CPN, PNP-BC, FAHA
Nurse Practitioner, Adult Congenital Heart Program
Nicklaus Children’s Hospital
Miami, Florida

Amanda Green, MSN, ARNP, FNP-C
Nurse Practitioner, Cardiac Catheterization
Nicklaus Children’s Hospital
Miami, Florida

Embryology
• Affects 5% to 8% of all newborns with congenital heart disease (Krieger, 2015)
• Occurs during the 6th to 8th week of gestation
 o Cause of Coarctation of the Aorta (CoA) is unknown; there are two theories as to the causation of coarctation (Beekman, 2008):
 ▪ Ductus Tissue Theory- Postnatal constriction of aberrant ductal tissue
 ▪ Hemodynamic Theory- Intrauterine alterations of blood flow through the aortic arch

Abnormal development
• Deformity of the aortic isthmus (where the ductus arteriosus joins the descending aorta) - characterized by narrowing of the proximal aorta or distal to the left subclavian artery. (Moon, 2011).
 o Localized stenosis - a shelf-like infolding of the posterior aortic wall into the aortic lumen opposite, proximal and/or distal to the ductus arteriosus (Kaemmerer, 2011)
 o Long hypoplastic segment- a tubular hypoplasia involving the aortic arch or the aorta distal to the origin of the left subclavian artery and the ductus area (Kaemmerer, 2011)

- Simple CoA: coarctation in the absence of other lesions
- Complex CoA (Krieger, 2015)
 - Includes intracardiac and/or extracardiac lesions
 - Bicuspid Aortic valve – occurs in 50-60%
 - Ventricular septal defect, atrial septal defect
 - CoA & Complex CHD (Transposition of the great arteries, atrioventricular canal defect, hypoplastic left heart syndrome)
 - CoA can present with other forms of left heart obstruction (mitral stenosis, subaortic stenosis, aortic stenosis)
 - Noncardiac anomaly- intracranial aneurysm (10%)
 - Of those patients with a bicuspid aortic valve, 5% of those patients will also have CoA
- Genetic component
 - In Turner XO syndrome - 2 35% of patients have CoA (Krieger, 2015)

Physiology
- Left ventricular hypertension
 - Narrowing of the aorta causes increased resistance to left ventricular outflow resulting in elevated systolic pressure
 - Upper extremity hypertension (Krieger, 2015)
 - Lower extremity BP lower than the upper body BP
 - “Gradient” is the difference between higher upper body & decreased lower body BP
- Closure of ductus arteriosus
 - Results in fully oxygenated arterial blood – unless other lesions are present
 - Closure of foramen ovalae and ductus arteriosus after birth causes entire cardiac output to flow through the stenotic aortic segment (Beekman, 2008)

Clinical Features
- Cardinal features (Krieger, 2015; Kaemmerer, 2011)
 - Upper body arterial hypertension
 - Weak, absent, and/or delayed femoral pulses
 - Decrease in blood pressure in lower extremities
 - Palpable collateral arteries over the medial aspect of the scapulae, the lateral chest wall, and between the ribs
 - Thrill- suprasternal notch or neck vessels
 - Heave- no displaced heart sound
- Infant
 - Severe CoA of the newborn
 - Survival depends on patency of the ductus arteriosus
 - When ductus arteriosus closes (approximately 8 to 10 days of life
• Newborn develops:
 o Shock & heart failure
 o Metabolic disturbances
 o Hypothermia
 o Hypoglycemia

 ▪ Results in: (Beekman, 2008)
 • Lower body
 • Renal hypoperfusion with renal failure
 • Necrotizing enterocolitis (NEC)

• Child or adolescent
 o Upper extremity hypertension
 ▪ Widened pulse pressure as patient gets older
 ▪ Variability of Right and Left Arm pressures, dependent on location of
 CoA in relation to the left & right subclavian artery
 o Murmurs
 ▪ Grade 2/6 to 3/6 systolic ejection murmur at the upper left sternal border,
 at the base & left interscapular space posteriorly (Beekman, 2008)

• Adults
 o Patients typically diagnosed & treated earlier in life, but may rarely present with
 upper extremity hypertension as an adult with a native CoA (Daniels, 2008)

Medical/surgical interventions
• Diagnosis:
 o Most often via clinical exam, echocardiogram, and chest x-ray, MRI or CT
 o Diagnostic cardiac catheterization only if anatomy and hemodynamics, associated
 lesions are more complex, and additional clinical questions are present (Beekman,
 2008)

• Treatment & Timing:
 o Individualized to lesion, associated conditions
 o Infant: If severe CoA, signs occur in first hours of life
 ▪ Immediate intervention required
 ▪ Medical – initial stabilization, inotropic support
 ▪ Prostaglandin E1 IV - maintain open ductus arteriosus
 o Allows for flow from RV to enter MPA, cross the ductus,
 enters the aorta & perfuses the descending aorta, renal &
 mesentery arteries
 ▪ Surgical CoA repair
 ▪ May require individualized plan to treat any additional cardiac defects
 o Child, adolescent
 ▪ Repair at 2 to 3 years of age, or upon diagnosis
 o Adult
 ▪ In adults, endovascular stenting by cardiac cath has largely supplanted
 traditional surgery (Bhatt, 2015)
Surgery - 4 Common types of repair - regardless of technique, usually performed via a left thoracotomy incision
 o End to end anastomosis – 1945 (Vonder Muhull, 2016)
 ▪ Surgical treatment of choice in most centers
 ▪ Excision of CoA area, circumferential anastomosis is completed with interrupted sutures anteriorly (Beekman, 2008)

 o Left subclavian flap – 1966 by Waldhausen and Nahrwold (Beekman, 2008)
 ▪ Ligate left subclavian artery, open the proximal subclavian artery and beyond the CoA
 ▪ Subclavian artery flap is folded down over the CoA section and sutured into place
Coarctation Repair with Left Subclavian Flap

- Prosthetic patch aortoplasty - 1961 by Vosschulte (Beekman, 2008)
 - Longitudinal incision is made across the CoA
 - Area enlarged with a Dacron or Gore-Tex® patch
- Bypass graft
 - A tube is sewn in between the ascending & descending thoracic aorta
- Outcomes
 - Mortality rates vary on patient age and associated lesions (Kaemmerer, 2011)
 - Simple CoA - Low mortality: Neonate 2.1%; Infant 0.64%; Child 0% (STS.org, 2016)
 - Age 2 to 5 - best age to electively operate due to low surgical risk
 - Death rates strongly related to complexity of any additional lesions
 - Rarely diagnosed in adults > 40 year old (Bhatt, et al., 2015).
 Untreated CoA has 75% mortality by age 46 years (Bhatt, et al., 2015)
 - After age 30 or 40 - intraoperative mortality rate increases due to degenerative changes to the aortic wall.
 - Morbidity
 - Post-operative risks:
 - Potential paradoxical hypertension
- Spinal cord ischemia & paralysis
- Recurrent laryngeal or phrenic nerve injury
- Chylothorax
- Bleeding
- Infection

- Significant long term issues: See Section on Long Term Care below

- Cardiac Catheterization: Interventional, Balloon angioplasty, potential stent
 - Balloon angioplasty
 - Began 1982
 - Widely accepted for treating recoarctaton
 - Enlarges CoA lumen
 - Produces linear intimal and medial tears at the CoA site
 - Artery tear may extend to adventitia – risk aneurysm
 - Stent implantation following CoA angioplasty (See illustration below)

Balloon Angioplasty with Implantation of Stent
© Scientific Software Solutions, 2016. All rights reserved.

- Endovascular buttress, supports the arterial wall and opposes the torn media to the intima (Krieger, 2015)
- Restenosis uncommon
- Allows for redilatation if needed as child grows, typically every 3-5 years (Beekman, 2008)
- See angiograms below for ciniaangiographic images of stent implantation
Actual Angiograms of Catheter Intervention of Native Coarctation with Stent Placement

- Covered stents
 - First covered stents (CP Covered stents) approved for use in CoA in 2016
 - Can be used to exclude an aneurysm or reduce bleeding after intimal tear (Krieger, 2015)

Actual Angiograms of Catheter Intervention of Native Coarctation with Placement of Covered Stent

- Outcomes
 - Mortality - rare beyond newborn period (Beekman, 2008)
 - Higher rate has been reported for angioplasty for recurrent post op CoA versus native CoA
 - Acute complications (Beekman, 2008)
- Femoral artery injury and thrombosis - common in infants younger than 12 months
- Femoral artery hemorrhage
- Cerebrovascular accident
 - Significant long term issues: See Section on Long Term Care below

Long Term Care (Vonder Muhull, 2016)
- Excellent prognosis for normal growth, development when CoA successfully repaired in childhood (Beekman, 2008)
- Lifelong care imperative to monitor for long term risks (Bhatt, 2015; Krieger, 2015)
 - Hypertension,
 - Re-coarctation,
 - Development of aneurysms
 - Premature cardiovascular complications
- CoA is a *Moderately complex* adult congenital heart condition (Adult Congenital Heart Association- Lifelong Care pamphlet)
 - Requires a minimum of an annual life time follow-up evaluation (Gurvitz, 2013)
 (See components of follow-up visit for adult care below.)
- Potential Complications & Risk
 - May occur after all forms of repairs (Kaemmerer, 2011)
 - **Residual CoA**
 - Presence of gradient in aorta after repair with the development of restenosis, gradient in aorta after an initially successful repair
 - 8% to 54% (Daniels, 2008)
 - Recoarctation
 - Suspected if upper and lower limb gradient of > 20 mm Hg
 - Measured noninvasively by blood pressure or directly by cardiac catheterization
 - May cause systemic hypertension, heart failure, left ventricular wall mass, coronary artery disease
 - Risk increases with younger age at time of repair
 - **Systemic arterial hypertension**
 - Present in 1/3 of patients
 - Increases over time even after technically successful intervention (Krieger, 2015)
 - Occurs at rest or during exercise (Krieger, 2015)
 - Target for BP therapy is < 140/90 (Bhatt, 2015)
 - More than 60% have hypertension 25 years after repair (Brown, 2013)
 - Can be related to re-coarctation. **If patients represent with hypertension after CoA repair, a residual obstruction must be ruled out
 - CoA patients have structural changes in the wall of vessels leading to stiffer arterial walls, reduced baroreceptor sensitivity, changes in renin-angiotensin system, impaired endothelial function
Higher risk of prevalence of hypertension with later repair (Bhatt, 2015)

Hypertension
- Can lead to early cardiovascular events
 - Third or fourth decade of life (Krieger, 2015)
 - Higher risk for myocardial infarction, cerebral vascular accidents, aortic dissection, LV systolic dysfunction, endocarditis (Krieger, 2015)

Coronary artery disease (CAD)
- Higher risk for premature onset atherosclerosis and death from coronary artery disease (Krieger, 2015)
- Important to monitor and control CAD risk factors
 - Hypertension
 - Hypercholesterolemia
 - Obesity
 - Smoking

Progressive valve disease, bicuspid aortic valve or mitral valve (Daniels, 2008)
- Bicuspid aortic valve can progress to stenosis (59-81%) or regurgitation (13-22%) (Sabet, 1999)
- Predictors of progressive valve dysfunction
 - Increasing age
 - Hypertension

Aortic aneurysm at the site of CoA, ascending or descending aorta
- Highest after prosthetic patch aortoplasty
- Increased risk of aortic rupture
- Recognition and early management essential to preventing a life threatening rupture
 - Imaging with MRI is the modality of choice
 - Can be managed with percutaneous covered stents

Brain aneurysm
- Dissection and intracranial hemorrhage
 - May be related to berry aneurysms in circle of Willis (Beekman, 2008)
- Higher risk of stroke

Long term concerns may be greatly affected by associated cardiac lesions
- Left shoulder elevation - seen in adults due to left lateral thoracotomy
- Left arm - decreased pulse/ BP if surgery used a left subclavian artery patch
- Sudden death (Daniels, 2008)

Bacterial endocarditis
- Antibiotic prophylaxis prior to dental procedures no longer required by American Heart Association, 2007
- Should seek additional information regarding status of other lesions

Long Term Follow-up Care in Adults with CoA repair
- Annual visits: Classified as moderately complex congenital heart disease
• Clinical evaluation: Monitor for re CoA (Krieger, 2015)
 ▪ Documentation of type of CoA repair is important
 ▪ Monitor blood pressures & pulses (Kaemmerer, 2011)
 ▪ Measure four extremity BP in arm in leg in lying flat at least yearly (Gurvitz, 2013)
 • Normal BP: Lower extremity BP will be higher than upper extremity BP by 10-20%
 • If lower extremity BP is lower than arm BP by > 10 mmHg then suspect a residual CoA or other form of peripheral arterial disease
 • If collateral vessels are present, the CoA gradient may not be high
 ▪ Pulses: Simultaneous palpation of right radial & femoral pulses: Suspect a CoA if the femoral pulse is weak or delayed in relation to the radial pulse
 ▪ Murmur – listen for posterior murmur
 ▪ Assessment NOTE: Monitor four extremities BP
 • If left subclavian artery used as part of repair, BP’s will be LOWER in the left arm (avoid BP measure & use of arterial line here)
 • If aberrant subclavian artery present – must consider use of left arm to obtain a BP which is proximal to CoA repair
 • May require ambulatory BP measures
 ▪ Electrocardiogram
 ▪ Transthoracic echo
 ▪ Cardiac magnetic resonance (MRI) or CT
 • Serial MRI surveillance aorta: potential aneurysms, pseudoaneysms, status of aortic repair, valves
 • Recommend – at least every five years (Gurvitz, 2013; Krieger, 2015)
 • With CoA stent present, less frequent use of MRI due to artifact in images
 ▪ Exercise test: Surveillance for exercise induced hypertension (Krieger, 2015)
 ▪ Monitor new or different type headache or chest pain
 • May be sign of possible cerebral aneurysm (Kaemmerer, 2011)
 • Report any chest pain or hemoptysis. Risk for aortic aneurysm formation, rupture (Vonder Muhll, 2016)
 ▪ Monitor closely for cardiovascular risk factors for CAD: control BP, cholesterol; avoid obesity & smoking (Kaemmerer, 2011)
 • Minimize additional risk for coronary artery disease
 • Treat modifiable risk factors (Krieger, 2015; Bhatt, 2015)
 • Aggressive medical treatment of residual hypertension – once a residual CoA is excluded (Krieger, 2015; Bhatt, 2015)
 • Encourage attainment of ideal body weight (BMI goal 18.5-25 kg/m2) (Bhatt, 2015)
• Encourage healthy eating, healthy life style, sodium restricted diet (Bhatt, 2015)
• Serial assessments lipid screening - LDL primary target for therapy, goal < 100 mg/dL (Bhatt, 2015)

• Education & Resources
 o Assess knowledge, review condition, life long care needs (Resources: American Heart Association (www.myamericanheart.org), Adult Congenital Heart Association (www.achaheart.org)
 o Pregnancy information website: http://www.heartdiseaseandpregnancy.com/
 o Annual education on risk for premature atherosclerotic heart disease risk factors, modifying the risk factors and self-care (Krieger, 2015)

Care during pregnancy (Refer to ACHD Guidelines on Pregnancy in Adults with CHD)
• Recommendations
 o Consultation: Adult congenital heart cardiologist before pregnancy
 o Collaborative, multidisciplinary care by adult congenital cardiology and perinatal team (Krieger, 2015)
• Patients at highest risk include:
 o Unrepaired CoA
 o Arterial hypertension
 o Residual CoA
 o Aneurysm at site of CoA repair (Kaemmerer, 2011)
• Risk of having child with a heart defect 3-10% (ACHA)

References:

Revised July 2016
JA Nieves, A Green