Hypoplastic Left Heart Syndrome Guideline

What the Nurse Caring for the Patient with CHD Needs to Know

Louise Callow, MSN, RN, CPNP
Pediatric Cardiac Surgery Nurse Practitioner
University of Michigan, CS Mott Children’s Hospital

Embryology
- Formation of Atrioventricular (AV) cardiac valves
 - Days 34 to 36
 - Formed from endocardial cushions
- Formation of the ventricles: Days 22-35
- Spectrum of underdevelopment of left sided heart structures

Anatomy
- Hypoplasia or agenesis of the tricuspid valve (TV) or mitral valve (MV)
 (As indicated by #1 in Illustration)
- Hypoplasia or agenesis of the aortic valve (AV) or pulmonary valve (PV)
 (As indicated by #2 in Illustration)
- Hypoplasia of the left ventricle (LV)
 (As indicated by #3 in Illustration)
- Hypoplasia of the ascending aorta with/without coarctation or interrupted aortic arch
 (As indicated by numbers 4 & 5 in Illustration)
- Possible thick or sclerotic endocardium
- Atrial septal defect
 (As indicated by #6 in Illustration)
- Patent ductus arteriosus (PDA)
Physiology

- Hypoplastic left heart syndrome (HLHS)
 - Blood enters the left atrium (LA)
 - Cannot exit due to hypoplasia/agenesis of the MV
 - Crosses the atrial defect into the right atrium (RA)
 - Blood then crosses the tricuspid valve (TV) and enters the right ventricle (RV)
 - Blood enters the pulmonary artery (PA) through the pulmonary valve (PV)
 - Blood then enters the lungs through the PA and shunts right to left through the PDA to the systemic circulation
 - Balance of pulmonary blood flow
 - Dependent on the respective pulmonary and systemic resistance
 - Size of the PDA
 - Coronary blood flow provided by retrograde filling of the aorta through the PDA

- Hypoplastic left heart syndrome with restrictive ASD
 - Blood enters the left atrium
 - Cannot exit due to hypoplasia/agenesis of MV
 - Attempts to cross the atrial defect into RA
 - Due to the atrial constriction
 - Blood then is unable to exit LA
 - Backs up into pulmonary veins and pulmonary vasculature.
 - Results in pulmonary edema, pulmonary hypertension, desaturation and low cardiac output.

Interventions

Medical

- Prostaglandin (PGE\textsubscript{1}) to maintain ductal patency and systemic perfusion
 - Infant with postnatal diagnosis
 - Becomes symptomatic as ductus closes and systemic perfusion increasingly compromised
 - Early symptoms
 - Irritable
 - Not easily consoled
 - Feeding difficulties
 - Tachypnea
 - Color changes
 - Pale
 - Dusky
 - Late symptoms
 - Lethargy
 - Increasing respiratory distress
 - Cyanosis
 - Leads to profound low cardiac output and pending cardiovascular collapse
- Presents to PCP or emergency department in cardiac failure/shock
- Management
 - Initiate PGE1 at 0.1mcg/kg/minute at time of presentation of postnatal diagnosis, even if diagnosis uncertain
 - Must also rule out other etiologies of cardiovascular compromise, specifically sepsis
 - Initiate course of antibiotics until cultures negative
 - Investigation warranted even when diagnosis confirmed
 - At birth with prenatal diagnosis
 - Initiated at initial resuscitation generally at lower dose typically 0.05mcg/kg/minute
 - Reduce PGE dose
 - Once ductal patency established
 - To minimum required to maintain ductal patency
 - To minimize side effects
 - Manage side effects of PGE1
 - Observation for PGE side effects including apnea, fever, seizures
 - Initiation of theophylline derivative for prevention of PGE associated apnea
- Additional neonatal non-interventional management (See Pediatric Neonatal Guidelines for Neonatal Care)
 - Indicated by specific patient status and degree of low cardiac output
 - Intubation and vasoactive support
 - Use of oxygen, nitrogen and afterload reduction
 - To balance pulmonary and systemic blood flow
 - Treat hypoxemia preoperatively
 - Continuous evaluation of end organ function as reflection of adequacy of cardiac output
 - Renal function and use of diuretic as indicated to maintain euvoletic state
 - Cranial ultrasound and observation for altered neurologic status especially for infants requiring postnatal resuscitation
 - Observation for bowel ischemia, hematochezia or pneumatosis on x-ray, due to preoperative shock or low diastolic pressure and hypoxemia
 - Nutritional support initiated at 24 hours of age
 - Either enteral or parenteral
 - Depends on institutional preference

Interventional Cardiac Catheterization
- Neonatal intervention [See Pediatric Neonatal Guidelines on Neonatal Care and Venous-Arterial Extracorporeal Membrane Oxygenation (VA ECMO)]
 - Balloon atrial septostomy (BAS)
 - Open atrial defect
 - Decompress left atrium and pulmonary veins
 - Indicated for pre- and postnatal diagnosis of restrictive ASD
 - Restrictive ASD - Emergent procedures
- Indicated for severe low cardiac output and hypoxemia at birth
- ECMO as exit procedure for cath lab interventions
- Initiation of ECMO in delivery room
- Emergent hybrid procedure

- Fetal interventions
 - Prenatal intervention
 - Balloon atrial septostomy - attempts to relieve restrictive atrial septum
 - Aortic balloon dilation - optimize growth of LV and aortic valve (AV)
 - Used in situations with marginal hypoplasia of LV and AV
 - May prevent single ventricle reconstruction
 - Generally 24 weeks gestation

Surgical interventions

- Stage I reconstruction: Norwood/Sano or Norwood/systemic to pulmonary shunt
 - Aortic arch reconstruction for repair of arch obstruction and establishment of systemic outflow and unobstructed coronary blood flow
 - Creation of nonrestrictive ASD
 - Creation of controlled source of pulmonary blood flow
 - Classic Blalock-Taussig shunt: end to side anastomosis subclavian to right or left branch pulmonary artery shunt (rarely performed)
 - Modified Blalock-Taussig shunt: Gortex® interposition graft between subclavian or innominate artery and right or left branch pulmonary artery (See illustration below)
• Sano: right ventricular to pulmonary artery non-valved Gortex® tube
 (See illustration below)

© Scientific Software Solutions, 2016. All rights reserved

• Complications of Norwood
 ▪ Pulmonary overcirculation and systemic undercirculation resulting in systemic hypoperfusion and low cardiac output
 ▪ Pulmonary undercirculation resulting in hypoxemia and good systemic perfusion
 ▪ Residual arch obstruction
 ▪ Restrictive ASD
 ▪ Later complications:
 • Thromboembolic events of the systemic to pulmonary shunt or Sano
 • Congestive heart failure (CHF)
 • Poor growth of central pulmonary arteries

• Stage I reconstruction: Hybrid
 • PDA stent (See Illustration below)
 ▪ Assure secure source of systemic and coronary artery blood flow
 • Pulmonary artery bands (See Illustration below)
 ▪ Regulate pulmonary blood flow to prevent pulmonary overcirculation
 ▪ Balance of pulmonary and systemic blood flow
 • Atrial septostomy/septectomy
 ▪ Unobstructed outflow of blood from lungs, pulmonary veins and left atrium
 ▪ Unobstructed mixing of oxygenated and unoxygenated blood at atrial level
Hybrid procedure
© Scientific Software Solutions, 2016. All rights reserved

- Complications of Hybrid
 - Perforation
 - Embolism
 - Congestive heart failure
 - Restriction of ASD

- Discharge after Stage I reconstruction (See Pediatric Neonatal Guidelines on Interstage Monitoring for Infants with Hypoplastic Left Heart Syndrome)
 - Includes both Norwood Procedures with BT shunt and Sano Shunt and Hybrid Procedure
 - Infants at high risk for:
 - Growth failure
 - Developmental delays
 - Hypoxia
 - Interstage morbidity and mortality

- Discharge planning extremely important
 - Direct communication with community practitioners
 - Scheduled follow up with both community practitioner and cardiologist/cardiology nurse practitioner/interstage coordinator
 - Ongoing monitoring and communication
 - Parent education
 - Use “teach back” methods
 - Include:
• Signs and symptoms of respiratory distress and increasing cardiovascular compromise
• Medication administration and monitoring
• Nutrition with supplements to formula/breast milk and caloric and weight gain monitoring
• Developmental assessment and interventions
 o Structured program available for interstage monitoring (See Pediatric Neonatal Guidelines for Interstage Monitoring for Hypoplastic Left Heart Syndrome)

• Stage II reconstruction: Hemi-Fontan or Bidirectional Glenn
 o Connection of superior vena cava (SVC) to pulmonary arteries
 o Provide controlled pulmonary blood flow based on pulmonary resistance and ventricular function/end diastolic pressure
 ▪ Increases SVC pressure
 ▪ Decreases volume load to ventricle and increases diastolic blood pressure and coronary perfusion
 o Ligation of Sano or systemic to pulmonary shunt
 o Complications of Hemi-Fontan and Bidirectional Glenn
 ▪ SVC syndrome
 ▪ Pleural effusion
 ▪ Hypoxemia

Glenn Shunt

• Stage III reconstruction: Modified Fontan
 o Physiologic correction for single ventricle lesion
o Pulmonary blood flow achieved through SVC/inferior vena cava (IVC) /PA to LA pressure gradient (transpulmonary gradient)

o Despite surgical technique achieve systemic flow (IVC/SVC) directly into PA’s bypassing ventricular contribution

o Fenestration utilized to assist hemodynamic adjustment to acutely elevated venous pressures

o Surgical options for Fontan operation
 ▪ Lateral tunnel: Gortex® graft placed inside RA to direct IVC flow through RA/SVC junction and into main pulmonary artery (MPA)
 ▪ Extracardiac: Gortex® or Dacron circumferential tube graft from IVC to MPA
 ▪ Direct RA to PA anastomosis: connection of right atrial appendage to PA (not preformed currently)

Lateral Tunnel Fontan

 ▪ Arrhythmia: ablation, pacemaker, ICD, medications, conversion to lateral tunnel or extracardiac Fontan connection with plication of RA (See to Adult and Pediatric Neonatal Problem Guidelines on Arrhythmia Management for further discussion and management)
 ▪ Ventricular dysfunction: rhythm and transplant (See Adult Problem Guidelines on Systemic Ventricular Failure for further discussion and management.)
- Atroventricular valve regurgitation (AVVR): Valve repair/replacement
- Fontan pathway obstruction: reoperation for relief of conduit stenosis
- Protein Loosing Enteropathy (PLE): (See Pediatric Neonatal Guidelines on Nutrition for further discussion and management of PLE)
 - Loss of protein into abdomen
 - Diarrhea
 - Edema
 - Etiology/definitive treatment unknown
 - Treatment may include conversion Fontan, creation of ASD, or transplant
- Plastic bronchitis: casts that occlude bronchus, no treatment
- Thromboembolic events: anticoagulation varies from center to center but minimally lifelong aspirin (See Adult and Pediatric Neonatal Guidelines for Anticoagulation Management)

References:

Reviewed/revised 2016
L. Callow