Embryology

- **Tetralogy of Fallot (TOF)**
 - Most common cause of cyanotic congenital heart disease (CHD)
 - Incidence of 7-10% of all CHD
 - TOF-PA
 - Accounts for about 2% of CHD; incidence of 0.07 per 1000 live births
 - Accounts for 20.3% of all forms of TOF
 - With multiple aortopulmonary collaterals (MAPCAs)
 - Is the most extreme form of TOF
 - Accounts for 20% of all cases of TOF

- **Normal development**
 - Lungs develop from foregut and carry nutrient supply from the paired dorsal aorta
 - Paired 6th aortic arches give rise to branches that fuse with the pulmonary vascular tree at 27 days gestation
 - Branches from the descending thoracic arch regress and 6th aortic arch enlarges
 - Aorta and pulmonary arteries (PAs) form from the distal bulbus cordis
 - Truncus arteriosus (TA) positioned above the right ventricle (RV)
 - Bulbotruncal ridges separate the great arteries
Aortic component rotates posteriorly

- Abnormal development of TOF-PA
 - Occurs between 5th-6th week gestation
 - Faulty rotation of bulbus-truncus results in incomplete transfer of aorta above the left ventricle (LV)
 - Posterior malalignment of infundibular septum results in ventricular septal defect (VSD)
 - Infundibular stenosis developmental theories
 - Anterior displacement of the bulbotruncal region, or
 - Underdevelopment of the subpulmonic infundibulum resulting in conal septum hypoplasia

- The RV outflow obstruction often multi-level
 - Anterior and cephalad deviation of the infundibular septum results in subvalvar obstruction
 - Hypertrophy of muscular bands can cause further subvalvar obstruction
 - Pulmonary valve (PV) annulus usually hypoplastic, but may be normal size
 - PV can be bicuspid and stenotic
 - May have supravalvar narrowing in the main pulmonary artery (MPA) at the sinotubular ridge
 - Further obstruction at the branch PAs due to hypoplasia or focal areas of stenosis
 - Commonly at the proximal branch pulmonary arteries
 - Especially ? Usually (better word?) the proximal left pulmonary artery (LPA) near the site of ductal insertion

- Associated genetic syndromes
 - Genetic testing
 - Recommended for all patients with TOF
 - Must be done prior to cardiopulmonary bypass (CPB)
 - Conotruncal defect
 - High incidence of 22q11 deletion (DiGeorge Syndrome)
 - Up to 50%

Anatomy (See illustration below for TOF)

- Characterized by the combination of four anatomic malformations:
 - Ventricular Septal Defect (VSD) (Number 4 in illustration below)
 - Overriding aorta, overriding the muscular ventricular septum (Number 2 in illustration below)
 - Obstruction of RV outflow tract (Number 1 in illustration below)
 - PAs usually confluent (Number 3 in illustration below) #3 looks like it refers to RV, not PAs
 - RV hypertrophy (Area of arrows in illustration below)
Tetralogy of Fallot

- **TOF with PA**
 - More severe anatomical variant
 - Solid tissue forms in place of the pulmonary valve
 - Prevents any valve opening
 - Pulmonary blood flow occurs through the PDA
 - About 70% of TOF with PA
 - PAs typically confluent
 - Branch PAs confluent in 85%
 - Non-confluent in 15%

- **TOF with PA and MAPCAs**
 - Pulmonary blood flow is multifocal
 - Via MAPCAs
 - PAs often non-confluent (70%)
 - MAPCAs
 - Typically arise from the descending aorta
 - May arise from any vessel including:
 - Ascending aorta
 - Head and neck vessels
 - Coronary arteries
 - MAPCAs
 - Create highly variable patterns:
 - PA size and arborization
 - Origin of collateral vessels
 - Number of vessels
• Course of vessels
 ▪ Connections between the PA and collaterals
 ▪ Unpredictable
 ▪ Change as the patient grows.
 ▪ Can become irregularly shaped, thickened, kinked, or stenotic

Physiology
- In TOF
 o Four cardinal anatomic structures and degree of presentation
 ▪ Determine physiology
 ▪ Determine clinical presentation
 o Degree of RV outflow tract obstruction determines
 ▪ Pulmonary blood flow
 ▪ Degree of left to right shunting through the VSD
 ▪ Degree of cyanosis
- In TOF with PA
 o Complete obstruction of the RV outflow tract obstruction
 ▪ Must have alternate source of blood flow to the pulmonary arteries
 ▪ May be either via the PDA or by MAPCAs
 o Pulmonary blood flow via the PDA
 ▪ Prostaglandins (PGE) required to ensure pulmonary blood flow
 o Pulmonary blood flow via MAPCAs
 ▪ May or may not require PGE; depends on:
 ▪ Anatomy of the MAPCAs
 ▪ Presence of PDA
- Clinical Manifestations
 o Cyanotic at birth
 ▪ Degree of cyanosis depends on PDA and MAPCAs
 o Heart sounds
 ▪ Murmur
 ▪ Usually not heard
 ▪ May be a faint continuous murmur of PDA/MAPCAs
 ▪ Single, loud S2
 o Electrocardiogram (ECG)
 ▪ RV hypertrophy with right axis deviation
 ▪ Prominent R waves anteriorly and S waves posteriorly
 ▪ Upright T wave in V1
 ▪ May also see a qR (?QR) pattern in the right sided chest lead
 o Chest X-ray
 ▪ Normal-sized, boot-shaped heart
 ▪ Decreased pulmonary vascular markings
 ▪ A concavity in the region of the main pulmonary artery
 ▪ Right-sided aortic arch – 26-50%
 o Echocardiogram (ECHO)
 ▪ Parasternal-long axis view
 ▪ Large aortic valve (AV) that overrides a large malalignment VSD
- Color flow demonstrates lack of patency of RV outflow tract
- Suprasternal and high parasternal views evaluate:
 - Pulmonary trunk
 - Right and left pulmonary artery size
 - Confluence of PAs

Procedures and Interventions

- **Diagnostic Procedures**
 - Required as anatomy of the PAs and the source of pulmonary blood supply may vary widely
 - 2-dimenasional (2-D) ECHO with color flow and 2-D doppler
 - Main diagnostic tool
 - Identifies
 - Sources of PA blood flow - includes PDA and MAPCAs
 - Significant hypoplasia of the central pulmonary arteries
 - Presence of a small PDA
 - Highly predictive of the presence of MAPCAs
 - If present, further imaging by MRI or angiography likely
 - Magnetic Resonance Imaging (MRI)
 - Non-invasive tool
 - Visualize PAs and collateral supplies
 - Cardiac catheterization and angiography
 - Delineate all sources of pulmonary blood supply
 - Facilitates surgical planning

- **Interventions**
 - Cardiac catheterization
 - Diagnostic
 - Evaluation for surgical intervention
 - Identify sources of obstruction to pulmonary blood
 - Evaluate ventricular size, structure
 - Intervention
 - Initial evaluation of RV/PA connection
 - Possible radiofrequency ablation (RFA) of membranous PV
 - Balloon dilation of pulmonary stenosis (PS)/pulmonary atresia
 - Stent placement
 - PV annulus
 - PDA
 - Repeat catheterizations
 - Balloon dilation/stent placements in stenotic pulmonary artery segments
 - Coil embolization dual source of pulmonary blood supply
 - Coil embolization of MAPCAs
 - Surgical repair
 - Options depend on PA anatomy and presence/extent of MAPCAs
• Single stage repair
 • Considered when PAs confluent and of good size
 • MAPCAs
 o Ligated at the aorta
 o Mobilized toward the posterior mediastinum to construct a pulmonary artery confluence
 o Conduit placed between confluence and RV
 • PAs reconstructed to relieve any surgically accessible stenotic areas
 • VSD closure
 • Mortality rate - 5-20%
• Staged repair
 • Depends on PA anatomy
 o May be required if PAs
 ▪ Hypoplastic
 ▪ Non-confluent
 ▪ Supplied by extensive MAPCAs.
 • Stage 1 – Palliative shunting
 o Induces enlargement and growth of the native PAs
 o Shunt types - Blalock-Taussig shunt, central shunt, or RV to PA conduit
 • Stage 2 Early unifocalization
 o Direct MAPCAs into a central pulmonary artery confluence
 o Improve long-term outcomes
 ▪ Maximize the recruitment of lung segments
 ▪ Increase likelihood of definitive repair
 ▪ Eliminate dual blood supply to a lung segment
 • Coil occlude MAPCA in cardiac catheterization laboratory (cath lab)
 • Ligate at time of unifocalization
 o Objectives
 ▪ To recruit as many of the perfused lung segments as possible
 ▪ Maximize the cross-sectional area of the pulmonary vascular bed
 ▪ Manage unprotected lung segments with a large blood supply
 • At risk for developing pulmonary vascular disease by four to six months of age if untreated
 • Stage 3- Final stage (See illustration below)
 o Complete intracardiac repair with VSD closure (Number 2 in illustration below)
 o Placement/replacement of a RV to pulmonary artery conduit (Number 1 in illustration below)
PA reconstruction as needed to meet following requirements:
- Central pulmonary arterial area should be greater than 50% of normal
- Presence of predominantly left-to-right intracardiac shunting
- Equivalent of an entire lung must be supplied by the central pulmonary artery confluence
- Stenotic lesions in the pulmonary artery outflow must be addressed

Specific Considerations
- Preoperative
 - Pulmonary blood flow supplied by:
 - PDA, MAPCAs, or both
 - Alternative sources of pulmonary blood flow accounts for variable clinical presentation
 - Neonates
 - With insufficient pulmonary blood flow, usually present with:
 - Cyanosis - PGE necessary to maintain ductal patency to improve/maintain pulmonary blood flow
 - Hypoxemia
- Metabolic acidosis
 - With adequate pulmonary blood flow
 - Large, unobstructed MAPCAs
 - With unrestricted blood flow
 - May lead to congestive heart failure
 - As pulmonary vascular resistance (PVR) decreases
 - Pulmonary blood flow may become excessive
 - Results in congestive heart failure
 - MAPCAs may provide pulmonary blood flow, but are prone to stenosis
 - Require screening for chromosomal anomalies
 - Common with conotruncal defects
 - Frequently see 22q11 deletion (DiGeorge syndrome)
 - Abnormal function of parathyroid glands leads to hypocalcemia
 - Immunodeficiency from abnormal T-cell-mediated response predisposes to increased infection risk
 - Physical defects include:
 - Palatal defects causing feeding difficulties
 - Kidney abnormalities
 - Gastrointestinal issues including abnormal motility which may lead to constipation
 - Dysmorphic facies (microstomia, micrognathia, unusually shaped ears, long nose)
 - Learning and psychiatric disorders

- Intraoperative
 - Operative goals:
 - Tailored to specific anatomy
 - Provide adequate, separate pulmonary and systemic circulations
 - Irradiated blood only if DiGeorge or absent thymus
 - Anticipate coagulopathies with severe cyanosis and polycythemia

- Postoperative (See Peds/Neo Problem Guidelines for Postoperative Care)
 - Concerns differ depending on repair
 - Palliation versus correction
 - Multi-staged repair versus one-stage repair
 - Residual defects
 - VSD or VSD patch leak
 - RV outflow tract obstruction
 - RV dysfunction may result in low cardiac output; may be caused by:
 - Increased RV volume loading
 - Ventriculotomy if performed
 - Lower compliance of neonatal myocardium
 - Arrhythmias (See Peds/Neo Problem Guidelines for Arrhythmia Management)
 - Complete Heart Block (CHB)
 - Requires temporary pacing
 - Possible permanent pacemaker, incidence is rare
- Junctional ectopic tachycardia (JET)
 - Potential for significant hemodynamic compromise
 - Reduce degree of hemodynamic impairment
 - Early recognition
 - Prompt treatment
 - Cooling to core temperature less than 36 degrees
 - Antiarrhythmic medications
 - Elevated RV pressure
 - May result from residual defects
 - Stenosis in pulmonary arteries
 - Stenosis at anastomosis sites
 - Residual MAPCAs
 - If prolonged, cardiac catheterization may be required
 - Dilation of stenotic pulmonary arteries
 - Embolization of residual MAPCAs
- Respiratory complications
 - Increased occurrence with unifocalization of MAPCAs
 - Bronchospasm related to dissection around bronchopulmonary tree
 - Reperfusion injury in patients with preoperative stenosis of MAPCAs
 - Pulmonary complications such as pneumonia, pulmonary hemorrhage, large airway compression
 - Prolonged respiratory failure requiring prolonged ventilation
- Genetic syndrome
 - 22q11 deletion (DiGeorge)
 - Anticipate hypocalcemia
 - May require frequent calcium replacement or infusion
 - Immune deficiencies
 - Require use of irradiated blood
 - Increased incidence of infections (See Peds/Neo Problem Guidelines for Infection Prevention)
- Provide parental education and support

Routine Care
- Lifelong disease requires careful follow-up through adulthood
 - Follow-up at least annually with adult CHD (ACHD) trained cardiologist/NP
 - Potential for additional surgical and interventional procedures
- Infants require frequent follow-up by pediatric cardiologist/NP trained in CHD
 - Prior to and evaluation of surgical intervention(s)
 - ECHO
 - Monitor RV pressure and function
 - Monitor pulmonary circulation
 - Conduit function
 - Evaluation for increasing stenosis/flow in MAPCAs
 - Evaluation for development of aortopulmonary collaterals
 - Repair with RV to PA conduits
 - Require conduit replacement
Risk for conduit stenosis and/or conduit valve degradation
 - Cardiac catheterization
 - Hemodynamic evaluation of RV function, PA stenosis
 - Intervention balloon dilation of PAs/ stent placement
 - Coil MAPCAs.
- Subacute Bacterial Endocarditis prophylaxis (See American Heart Association recommendations for Adult and Pediatric SBE Prophylaxis, 2015)

Long-term Complications/Problems (See Adult Problem Guidelines on Arrhythmia Management, Ventricular Dysfunction)
- Abnormal RV physiology secondary to chronic pulmonary regurgitation
 - Ventricular arrhythmias
 - Decreased RV compliance
 - Need for PV/conduit replacements
 - Exercise Intolerance
- Related to DiGeorge
 - Learning disabilities
 - Behavioral & mental health problems
 - Immune disorders
 - Poor vision and hearing
 - Velopharyngeal insufficiency
 - Mypoatic facies
 - Short stature

References

12/2015