Ventricular Septal Defect
What the Nurse Caring for a Patient with CHD Needs to Know

Courtney Petro, BSN, RN, CCRN
Registered Nurse, Cardiovascular ICU,
Lucile Packard Children’s Hospital at Stanford

Melanie Sojka, MSN, RN, CPNP-AC/PC
Pediatric Nurse Practitioner, Cardiac & Thoracic Surgery,
University of Chicago Medicine, Comer Children’s Hospital

Grace Macek, MSN, RN, PNP-BC
Pediatric Nurse Practitioner, Cardiac & Thoracic Surgery,
University of Chicago Medicine, Comer Children’s Hospital

Jennifer Newcombe, MSN, CNS, CPNP-AC/PC
Nurse Practitioner, Pediatric Cardiothoracic Surgery,
Loma Linda University Children’s Hospital

Dorothy M Beke, RN, MS, CPNP-PC/AC
CICU Clinical Nurse Specialist and Cardiology Clinic NP,
Boston Children’s Hospital

Embryology
- One of most common congenital heart defects (CHD)
- Intraventricular septum divides right (RV) & left (LV) ventricles
 - Consists of 3 separate septa
 - Beginning in 5th week embryonic development
 - Completely formed and closed by 7th-8th week embryonic development
- Septum results from:
 - Growth of muscular portion upward from ventricular floor towards endocardial cushions
 - Growth of subendocardial tissue from right side of endocardial cushion
 - Fuses with aorticopulmonary septum
 - Fuses with muscular portion
- Causes of ventricular septal defect (VSD)
 - Unclear
 - Multifactorial
 - Genetic/chromosomal syndromes (trisomy 13, 18, 21/ Holt-Orem, Cornelia de Lang)
 - Majority not associated with other defects or syndromes
 - More common in premature or low-birthweight infants

Anatomy
- Results when interventricular septum fails to close (See illustration below for locations and types of VSDs)
- Abnormal communication along septum between right & left ventricles
 - Disruption in fusion of 3 separate septa
 - Size and anatomical location
 - May be single or multiple defects
 - Varies with 4 major locations
 - Perimembranous (Membranous, infracristal, conoventricular malalignment including tetralogy of Fallot and double outlet defects) (Number 2 in above illustration)
 - Located in upper portion of septum
 - Most common - 70-80%
 - Frequently close in first year of life – 30-50%
 - Conoventricular defects do not spontaneously close
 - Outlet (Supracristal, conal, subpulmonary, subarterial) (Number 1 in above illustration)
 - Incomplete fusion along aortopulmonary septum with endocardial cushions & muscular portion
 - Located just beneath pulmonary valve
May involve prolapse of aortic valve leaflet
 - Results to damage in aortic valve
 - May result in aortic valve insufficiency
- Spontaneous closure uncommon

Inlet or Canal VSDs (Number 6 in above illustration) (Number 6 in above illustration)
- Lie beneath septal leaflet of TV
- May be referred to as an atrioventricular septal defect, but does not involve either atrioventricular valve
- Will not spontaneously close

Muscular or trabecular VSDs (Numbers 3, 4, & 5 in above illustration)
- Less common – 5-20%
- Completely surrounded by muscular tissue
- May appear as single defect on LV side and multiple defects on RV side due to trabeculations (criss-crossing fibrous and muscular tissue strands)
- May close spontaneously
- “Swiss cheese” septum
 - Multiple defects
 - Involve all septal regions

- Associated with other cardiac defects: Atrial Septal Defect (ASD), Patent Ductus Arteriosus (PDA), Coarctation of the Aorta (CoAo), subvalvar Aortic Stenosis (AS), or subpulmonic stenosis (PS)
- Multiple VSDs often present with: Tetralogy of Fallot (TOF), Double-Outlet Right Ventricle (DORV)
- May be acquired in older patients from post-surgical leak, trauma, or myocardial infarction

Physiology
- Abnormal blood flow across defect in ventricular septum
- Affected by:
 - Size of defect
 - Primary variable
 - Impacts shunt and need for repair
 - VSDs <25% of the aortic annulus diameter
 - Small
 - Minimal, if any, left-to-right shunting
 - Potential for spontaneous closure based upon location
 - VSDs 25%-75% of the aortic annulus diameter
 - Little to moderate left to right shunting
 - No pulmonary artery hypertension
 - May be mild to moderate pulmonary overcirculation
 - May have symptoms of congestive heart failure (CHF)
 - Can be managed with medications
- May improve as the patient grows and the defect starts to close
- VSDs >75% of the aortic annulus diameter
 - No restriction to flow
 - Moderate to large volume shunt
 - Pulmonary overcirculation with CHF symptoms
 - Increased pulmonary venous return
 - LA and LV dilation
 - LV hypertrophy
 - Increased RV volume
 - Increased pulmonary blood flow
 - Increased pulmonary pressures
 - May result in pulmonary artery hypertension (PAH) (See Peds/Neo Problem Guideline on Pulmonary Hypertension)
 - Long standing PAH may result in Eisenmenger’s Syndrome (See Adult Problem Guideline on Eisenmenger’s Syndrome)
 - Most likely requires closure
- Resistance to flow
 - Pulmonary vascular resistance (PVR)
 - Newborn
 - Pulmonary pressure ≥ systemic pressures
 - Rapidly fall with first few breaths after birth
 - Reaches normal adult pressures within first 2 months of age (Normal mean pressures ≤ 25 mmHg after first few weeks of life)
 - Decrease accelerated by:
 - Supplemental oxygen
 - Pulmonary vasoactive medications (iNO, sildenafil)
 - Decreased resistance increases flow across defect (left-to-right shunt)
 - Normal maturation of pulmonary vascular bed
 - Usually occurs by 2 months of age
 - RV pressure usually drops to ~ 1/3rd to 1/2 of LV pressure by ~ 2 weeks; however in the presence of a VSD, RV pressure may take longer to decrease.
 - Allows for development of pulmonary overcirculation
 - Systemic vascular resistance (SVR)
 - Newborn
 - Systemic pressures = pulmonary pressures
 - Left sided lesions increase systemic resistance
 - Coarctation of the aorta (CoA), aortic valve (AV) stenosis
 - Vasoconstriction
• Increased left-sided systolic pressure increases flow to RV (left-to-right shunt)

Procedures/Interventions

• **Indications for Intervention**:
 - Infants with greater than 2:1 shunt
 - Large sized VSDs and significant CHF
 - Medical treatment of CHF
 - Diuretic therapy
 - Digoxin/ angiotensin converting enzyme (ACE) inhibitors
 - Increase caloric intake
 - Goals: control symptoms and allow infant to grow
 - Surgical closure
 - Early closure (~ less than 3 months of age)
 - Unable to manage CHF and provide for somatic growth
 - Infants with shunts 1.5:1
 - Moderate sized VSD
 - May usually be followed for up to 5 years of age to maximize chance of spontaneous closure
 - Shunts less than 1.5:1
 - Small VSD
 - Require close follow-up
 - Outlet VSDs
 - May see prolapse of leaflet of AV and develop progressive aortic regurgitation (AR)
 - Repair before significant aortic regurgitation (AR) develops

• **Surgical intervention - complete repair via open heart surgery (OHS)**
 - Patch closure
 - Requires cardiopulmonary bypass & sternotomy
 - Majority of membranous & inlet VSDs closed through the transatrial approach
 - Repair thru tricuspid valve (TV)
 - May have obstructed visualization from valve leaflet
 - Requires retraction and sometimes detachment of valve leaflet and subsequent repair of TV
 - Some defects require a right ventriculotomy or pulmonary artery approach
 - Closed with patch material (Dacron or Polytetrafluoroethylene [PTFE])
 - Direct suture closure for very small defects
 - **Risks**
 - Injury to AV or conduction system
 - Residual VSD
 - Diminished RV function with ventriculotomy
 - **Intraoperative transesophageal echocardiography (TEE)**
 - Assess repair
 - Rule out residual VSD
- Assess competence of TV and AV
- Assess ventricular function

- **Surgical intervention** – palliative
 - Pulmonary Artery Band (PAB)
 - Requires sternotomy; cardiopulmonary bypass not required
 - Controls symptoms related to CHF
 - Allows infants to grow and reach appropriate size for surgical repair
 - Rarely indicated
 - Exceptions: infants < 2.5 kg with multiple/complex defects and/or intractable CHF

- **Combined Surgical/cardiac catheterization intervention** (Hybrid intervention)
 - **Indications**
 - Patients too small for percutaneous catheter system
 - Part of repair of complex lesion
 - Visualization of VSD difficult
 - **Periventricular closure**
 - Requires sternotomy but avoids cardiopulmonary bypass
 - Placement of percutaneous device directly through the right ventricular (RV) free wall

- **Cardiac catheterization intervention**
 - **Percutaneous closure**
 - Avoids sternotomy & cardiopulmonary bypass
 - Device is placed during cardiac catheterization
 - Muscular VSDs may be amenable to device closure

Specific considerations

- **Pre-operative considerations**
 - **Age**
 - Consider size and location of defect
 - Premature neonates
 - Consider size of defect relative to body size to determine timing of surgical correction
 - Neonates
 - Due to elevated PVR development of CHF rare in the first few weeks of life (See resistance to flow section)
 - Do not administer supplemental oxygen unless oxygen saturations persistently < 75%
 - Infants and children
 - May be managed medically
 - Require surgical correction
 - CHF unresponsive to medical management,
 - Growth failure
 - Outlet and inlet defects
 - **Health status**
 - Recent/frequent viral respiratory infections
 - Supportive management until cultures negative
• Surgery delayed until patients are symptom free to minimize post-bypass pulmonary complications
 – Failure to thrive
 – Consider nasogastric, high caloric feeding
 – Attempt to achieve positive caloric balance
• Postoperative (See Peds/Neo Problem Guidelines for Postoperative Management)
 – Most common open heart surgery for CHD
 – Ventilation
 – Patients beyond infancy may be extubated in OR
 – Neonates and infants may require ventilator support and aggressive diuresis before extubation
 – Patients with respiratory viral infections preoperatively may require extended intubation
 – Patients with pre-operative respiratory syncytial virus (RSV) should have negative cultures and be asymptomatic prior to surgery to minimize post-operative complications
 – Patients with pre-operative PAH will require pulmonary vasodilators (iNO, IV pulmonary vasodilators) (See Peds/Neo Problem Guidelines for Pulmonary Hypertension)
 – Inotropic support
 – Majority with minimal inotropic support
 – Repair of VSD with complex lesions or PAH
 – May also consider pulmonary vasodilators
 – Monitor for the following complications:
 – Arrhythmias (See Peds/Neo Problem Guidelines for Arrhythmia Management)
 – Most patients who have cardiopulmonary bypass surgery have temporary epicardial wires placed in OR
 – Complete Heart Block
 – Typically transient 24-48 hours
 – May be permanent and require placement of a permanent pacemaker, usually after 7-10 days
 – Supraventricular Tachycardia (SVT) or Junctional Ectopic Tachycardia (JET)
• Residual VSD
 – Common to have some residual leaks around patch which often eventually close with endothelialization
 – Assessment
 – Operating room
 – Analysis of RA and PA saturations
 – Echocardiography [Transesophageal (TEE) or Transthoracic (TTE)]
 – Intensive care unit
 – Desaturation
 – Increased pulmonary pressures
 – Decreased systemic pressures
VSD patch dehiscence with low cardiac output
- Pulmonary hypertensive crisis
- Patients with elevated PVR preoperatively or long-standing pulmonary over-circulation (See Ped/Neo Problem Guidelines for Pulmonary Hypertension)
 - Monitor PA pressures if PA line available
 - Follow pulmonary hypertension precautions
 - Avoid noxious stimulation
 - Fastidious pulmonary toilet (pre-medicate prior to suctioning)
 - Hyperventilation
 - Oxygenation
 - Strict acid / base control
 - Inhaled nitric oxide - potent pulmonary vasodilator
 - Sedation/paralysis

- Post-catheter device monitoring:
 - Bleeding at puncture site
 - Arrhythmias (Complete Heart Block)
 - Device may put pressure on the septum close to the left and right bundle branches
 - Valvar regurgitation
 - Risk of “trapping” the aortic, tricuspid, or mitral valve leaflets in the device
 - Device embolization

Long-Term Problems/Complications
- Structural Complications
 - Residual VSD
 - AI secondary to aortic cusp prolapse
 - Supravalvar pulmonic stenosis after prior placement of PAB
 - Subaortic membrane (rare)
 - Right ventricle muscle bundle hypertrophy (rare)
- Arrhythmias (See Peds/Neo Problem Guidelines for Arrhythmia Management)
 - Transient post-operative heart block
 - At risk of developing complete heart block
 - May require pacemaker placement
 - Ventricular arrhythmias
 - Monitor with periodic electrocardiograms (ECG), Holter monitor
 - Increased with ventriculotomy
- Heart Block requiring pacemaker placement (see Peds/Neo Problems Guidelines for Pacemakers)
 - Pacemaker interrogation every 3-6 months
 - Generator changes ~ every 6-10 years
 - Lead malfunction or fracture
 - Cardiovascular implantable electronic device (CIED) infection
Routine Cardiology Care for Surgical and Catheter Intervention

- Routine follow-up interval
 - Every 1-2 years by a cardiologist trained in Congenital Heart Disease (CHD) until 18 years of age
 - Adults
 - No residual VSD, no associated lesions and normal pulmonary pressure
 - Does not require continued follow-up at a regional ACHD center
 - Small residual VSD
 - Follow up visit every 3 to 5 years at an Adult CHD (ACHD) regional center
 - Device closure of a VSD
 - Follow up visit every 1 to 2 years at an ACHD center
 - Depends on the location of the VSD
- Cardiac studies as indicated by assessment/symptoms
 - Transient post-operative heart block, at least a yearly ECG
 - Echocardiogram
- Endocarditis prophylaxis recommendations (AHA, 2015)
 - Six months post-surgical repair/device placement
 - Longer if a residual defect is present

References:

2/2016