Aortic Valve
What the Nurse Caring for a Patient with Congenital Heart Disease Needs to Know

Amy Donnellan, DNP, CPNP-AC,
Cardiac Intensive Care Unit Nurse Practitioner,
Cincinnati Children’s Hospital Medical Center

Lindsey Justice, DNP, RN, CPNP-AC,
Cardiac Intensive Care Unit Nurse Practitioner,
Cincinnati Children’s Hospital Medical Center

Svetlana Streltsova, MSN, RN, CNE, CCRN,
Clinical Nurse III, Pediatric Cardiac Intensive Care Unit,
Morgan Stanley Children's Hospital of New York Presbyterian

Louise Callow, MSN, RN, CPNP,
Pediatric Cardiac Surgery Nurse Practitioner,
University of Michigan, CS Mott Children’s Hospital

Mary Rummell, MN, RN, CPNP, CNS, FAHA,
Clinical Nurse Specialist, Pediatric Cardiology/Cardiac Services,
Oregon Health & Science University (Retired)

Embryology
- Occurrence:
 o Defects of cardiac valves are the most common subtype of cardiac malformations
 o Account for 25% to 30% of all congenital heart defects
 o Most costly and relevant CHD
 o Wide spectrum of congenital defects in aortic valve

- Development of the heart valves occurs during the fourth to eighth weeks of gestation—after tubular heart looping
 o Walls of the tubular heart consist of an outer lining of myocardium and an inner lining of endocardial cells
 o Cardiac jelly, extensive extracellular matrix (ECM), separates the two layers
 o Cardiac jelly expands to form cardiac cushions at the sites of future valves
 - Outflow track (OT) valves = aortic and pulmonic valves
 - Final valves derived from endothelial-mesenchymal cells with neural crest cells from the brachial arches
 - Valves (Semilunar) have 3 equal cusp-shaped leaflets
 - Aortic valve incorporates coronary arteries
 - Atrioventricular (AV) valves = mitral and tricuspid
 - Final valves derived entirely from endocardial cushion tissue
 - Leaflet formed without a cusp
 - Two leaflets associated with left ventricle (mitral)
 - Three leaflets associated with right ventricle (tricuspid)
• Coordinated by complex interplay of:
 o Genetics
 o Signaling pathways that regulate cell apoptosis and proliferation
 o Environmental factors
 ▪ Maternal hyperglycemia
 ▪ Acidosis
 ▪ Blood flow through developing heart

Anatomy

• Clinical spectrum varies from presence of a malformed bicuspid aortic valve that functions normally to severe aortic stenosis (AS)
• Types/anatomic location of stenosis (See illustration below for intracardiac position of aortic valve and relation of other structures involved in anatomic locations of stenosis.)
 o Valvular
 ▪ Seventy to 80% of all AS
 ▪ Decrease in orifice size
 • Results from thickening and increased rigidity of valve leaflets.
 ▪ Most common defect
 • Bicuspid aortic valve
 • Only two valve cusps present
 • Results from partial or complete fusion of two of the aortic valve cusps
 • Conjoined vs. nonconjoined cusps may be equal or asymmetric
 • Valve orifice may be central or non-central.
 ▪ Other forms
 • Unicuspid valve
 o Fusion of more than one cusp
 o Results in a single slit like opening that extends to the annulus
 • Partial fusion of all three cusps with small central orifice
 • Hypoplasia of annulus
 o Rare
 o Aortic valve cusps relatively normal
 o Subvalvular
 ▪ Ten to 20% of all AS
 ▪ Common associated defects:
 • Ventricular septal defect
 • Coarctation of the aorta
 • Atrioventricular septal defect
 • Valvular aortic stenosis
 • Mitral valve anomalies.
 ▪ Obstruction
 • Ridge of membranous and/or fibrous tissue
 o Encircles left ventricular outflow tract (LVOT)
 o Or diffuse and form a tunnel
Tissue may be tethered to:
- Aortic valve
- Or anterior mitral leaflet
 - Aortic valve itself may become thickened due to subvalvular turbulent flow jet damaging the aortic valve cusps

Supravalvular
- Least common type of AS
- Approximately 30% to 50% have Williams syndrome
- Cause: reduced elastin in the arterial media causes decreased elasticity and thickened media with smooth muscle hypertrophy and increased collagen deposition.
 - Most commonly occurs at the sinotubular junction
 - Changes may also occur throughout the entire arterial system
 - Ascending aorta or aortic arch branches
 - Main or proximal branch pulmonary arteries
 - Renal and mesenteric arteries
- Abnormal attachment of AV commissures
 - Peripherally at level of the sinotubular junction
 - May cause
 - Abnormalities of the aortic valve
 - Impaired coronary blood flow

© Scientific Software Solutions, 2016. All rights reserved.
Cross sectional illustration shows aortic valve cusps in relation to other heart valves and coronary arteries.

© Scientific Software Solutions, 2016. All rights reserved.

- Other pathologic features that impact aortic valve dysmorphology and dysfunction include:
 - Calcification (rare in childhood and adolescence, but common in adults)
 - Fibrosis
 - Lipid accumulation
 - Inflammatory changes
 - Myxomatous degeneration
 - Annular dilation
 - Acquired fibrotic fusion of true commissures
- Congenitally abnormal aortic valves may result in weakening of ascending aorta
 - May result in:
 - Annular dilation, as well as
 - Dilation or aneurysm of ascending aorta
 - At risk for aortic dissection or rupture
- May develop left ventricular (LV) hypertrophy and myocardial fibrosis.

Physiology
- In utero presence of moderate to severe aortic stenosis
 - Increases LV pressure
May lead to:
- LV hypertrophy
- Decreased LV compliance
- Decreased flow through the left heart
- May result in hypoplasia of the LV, mitral valve, aortic valve annulus, and LV outflow tract.

- Valvar AS
 - Causes obstruction of LV outflow,
 - Increases LV afterload
 - LV pressure > aortic pressure during ejection due to decreased effective area of the valve orifice
 - With normal stroke volume, the pressure gradient reflects severity of the stenosis
 - Neonatal critical aortic stenosis:
 - Limited antegrade flow across the LV outflow tract
 - Requires a patent ductus arteriosus (PDA) to provide adequate systemic perfusion
 - Results from closure of the PDA
 - Cardiogenic shock
 - Severe hypoperfusion
 - Profound acidosis
 - Pediatric AS (Patients present after one year of age)
 - See compensatory LV hypertrophy
 - Maintains normal LV wall stress despite elevation in peak systolic pressure
 - Maintains cardiac output
 - Increases LV end-diastolic volume and pressure

- Valvular/subvalvular AS
 - LV subendocardial ischemia and infarction from:
 - Imbalance in coronary blood flow to the hypertrophied left ventricle
 - Increased myocardial oxygen demand
 - Ventricular pressure overload
 - Severe aortic stenosis
 - Little coronary reserve during stress
 - Exercise
 - Minimally increases stroke volume
 - Results in:
 - Increased heart rate
 - Shortened systole and diastole
 - Decreased time for ejection
 - Increased LV systolic pressure
 - Increased oxygen demand
 - Decreased coronary perfusion from shorter diastole
 - Increases systemic vasodilation
 - Further decreases diastolic blood pressure
 - May impair coronary perfusion
 - Supravalvular aortic stenosis
- Physiology similar to valvar and subvalvular
- Effect on coronary arteries
 - Proximal to the obstruction
 - Exposed to high pressure during systole
 - Leads to changes in coronary vasculature
 - Limited diastolic flow
 - Results in inadequate oxygen supply to meet demand
 - Leads to ischemia, infarction, and sudden death

Procedures/Interventions
- Medical Treatment
 - Bacterial endocarditis prophylaxis
 - Exercise restrictions
 - Periodic follow-up evaluations to monitor progression of valve dysfunction
- Indications
 - Adults - intervention is recommended only when symptoms develop
 - Children and adolescents
 - Earlier intervention even in asymptomatic patients
 - Relief of obstruction
 - Reduces the risk of sudden cardiac death
 - Decreases the extent of subtle and progressive myocardial injury
- Catheter Intervention
 - Balloon Valvuloplasty
 - Children and adolescents
 - Initial treatment
 - Re-stenosis or regurgitation may occur
 - Valve replacement may become necessary for definitive treatment
 - Not indicated if aortic valve regurgitation
 - Adults
 - Not indicated if cusp calcification develops
 - Not indicated with significant aortic valve regurgitation

American College of Cardiology/American Heart Association guidelines:

<table>
<thead>
<tr>
<th>Patient population</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic children and young adults with peak Doppler gradients ≥ 70 mmHg or peak-to-peak gradient > 60 mmHg.</td>
<td>Consider cardiac cath and possible balloon valvuloplasty</td>
</tr>
<tr>
<td>Patients who play competitive sports or may become pregnant, with peak Doppler gradients 50-70 mmHg or peak-to-peak gradient > 50 mmHg</td>
<td>Consider cardiac cath and possible balloon valvuloplasty</td>
</tr>
</tbody>
</table>
Patients with symptoms (angina, syncope, dyspnea on exertion) or ischemic changes at rest or on exercise ECG

| Valvuloplasty if peak-to-peak gradient is > 50 mmHg, other symptoms should be sought if gradient does not meet criteria |
| Asymptomatic patients with peak-to-peak gradients < 50 mmHg |
| Valvuloplasty not recommended unless cardiac output is impaired (gradient underestimates true severity of obstruction in this setting) |

- Transcatheter aortic valve replacement (TAVR)
 - Minimally invasive catheter placement of a bioprosthetic, expandible aortic valve within a native, calcified, severely stenotic aortic valve
 - Inserted in a hybrid (surgical suite with bi-plane imaging) lab
 - Inserted by a multidisciplinary team
 - Interventional cardiologist
 - Cardiothoracic surgeon
 - Inserted by an atrial or transthoracic approach
 - Involves sheaths and catheters > 16Fr
 - Too large for pediatric arteries
 - Consider in severe symptomatic aortic valve stenosis
 - Available for patients with severe symptoms at increased surgical risk
 - Advanced age
 - Multiple comorbidities
 - Surgical options determined to be contraindicated or at extreme risk by two cardiovascular surgeons
 - Currently (2015) not available for congenital unicuspid or bicuspid aortic valves

- Surgical Treatment
 - Indications
 - Development of progressive aortic valve regurgitation
 - Recurrent stenosis refractory to balloon valvuloplasty
 - Mechanical prosthesis
 - Requires long-term anticoagulation
 - No potential for valve growth
 - Limited availability of small sizes
 - Bioprosthetic valves (homograft or heterograft)
 - Avoids the need for anticoagulation
 - No potential for valve growth
 - Longevity less than mechanical, especially in small children
 - Ross procedure
 - May be preferred in infants and small children
 - Translocation of semi-lunar valves (See cross sectional illustration for proximity of semi lunar valves and similar structure.)
Native pulmonary valve translocated to the aortic position
- Pulmonary homograft implanted in the pulmonary valve position
- Native aortic valve may be surgically revised and inserted into pulmonary position (Double Switch)

- Benefits:
 - No need for anticoagulation
 - Potential autograft (neoaortic valve) growth

- Disadvantage:
 - May develop pulmonary homograft dysfunction
 - May require additional procedures
 - Pulmonary homograft replacement
 - Neoaortic valve dilation
 - Stenosis of both pulmonary and aortic suture lines

- Surgical resection of subaortic stenosis

 - Indications:
 - Progression of subaortic obstruction
 - Development of aortic regurgitation

 - Procedure
 - LV muscle resection
 - Membrane excision
 - Potential surgical correction of mitral valve abnormalities that contribute to the subaortic obstruction, such as anomalous papillary muscle insertion

 - Complications:
 - Recurrent subaortic stenosis in 20% of patients
 - Heart block
 - Worsening of aortic or mitral valve regurgitation
 - Inadvertent creation of a ventricular septal defect

- Severe subaortic stenosis with a small aortic annulus
 - May require more extensive tissue resection
 - Ross/Konno procedure

- Konno procedure

 - Indications
 - Treat all levels of LVOTO
 - Tunnel like subaortic stenosis
 - Diffuse obstructive hypertrophic cardiomyopathy
 - Congenital aortic valve stenosis
 - Proximal ascending aorta stenosis

 - May be combined with Ross procedure (Ross/Konno) specifically for tunnel subaortic stenosis and aortic annular hypoplasia

 - Procedure: Konno operation with Aortic valve replacement
 - Longitudinal incision on anterior aspect of ascending aorta distal to the aortic valve
- Continue incision to left of right coronary artery and into the right ventricle and down into the interventricular septum below any subvalvar stenosis
- Patch sutured to left ventricular side of the VSD and continued across the aortic annulus and onto the aorta enlarging the aortic annulus
- Prosthetic valve placed in the enlarged aortic root
- RVOT reconstructed with patch

- Procedure: Modified Konno
 - Enlargement of the LVOT without replacement of the aortic valve (normal size aortic annulus but presence of subaortic stenosis)
 - Right ventricular incision into the ventricular septum and into the LVOT up to the aortic valve
 - Patch placed on the right ventricular side of the surgically created VSD

- Complications
 - Complete heart block and requirement for pacemaker
 - Incomplete relief of LVOTO
 - Residual VSD
 - Damage to the mitral valve apparatus

- Surgical repair of supravalvular aortic stenosis
 - Patch enlargement of the sinotubular junction above the noncoronary sinus
 - Extended aortoplasty with a patch into the noncoronary and right coronary sinuses
 - Insertion of separate patches in all three sinuses after transecting the aorta (Brom’s technique)
 - Surgical correction of any obstruction to coronary blood flow
 - Patch augmentation of the ascending or transverse aorta as necessary

Specific considerations and routine care
- AS pre-procedure management depends on the degree of obstruction to forward flow from the left ventricle and the presence of systemic hypoperfusion
- Neonates with critical AS
 - Important to determine if the left heart and aortic structures are compatible with a two ventricle repair
 - Based on echocardiographic information
 - Considerations
 - Ventricular size, end diastolic volume
 - Left sided lesions
 - Mitral stenosis, adequacy of mitral valve annulus
 - Coarctation of the aorta
- Neonatal Critical AS pre-procedure Management
 - Prostaglandin infusion
- Establishes ductal-dependent systemic flow
- Alleviates pulmonary hypertension seen with severe LV dysfunction
 - Vasoactive support
 - Resuscitate
 - Support LV
 - Increase contractility
 - Intubation and mechanical ventilation
 - Correct severe acidosis
 - Reduce metabolic demand
 - Control pulmonary hypertension
 - Afterload reduce left ventricle
 - May require emergent atrial septostomy or even management with ECMO.
 - Monitor for signs of end-organ compromise
- Procedures: (See Peds/Neo Guidelines for Post-operative Care)
 - Key post-procedure management points
 - All procedures
 - Continual monitoring of cardiac rhythm for arrhythmias and ST segment changes
 - Systolic and diastolic blood pressure, widening pulse pressure
 - Low cardiac output syndrome
 - Balloon valvuloplasty
 - Impacted by the degree of severity of critical AS.
 - Low cardiac output syndrome
 - Best managed by inotropes to improve cardiac function
 - Ventilation with high concentrations of inspired oxygen, normal pH to treat pulmonary vascular reactivity
 - Significant pulmonary hypertension
 - Manage ventilation, consider use of nitric oxide
 - Continue prostaglandin infusion to maintain a patent ductus
 - Maintain systemic perfusion
 - Decompress the pulmonary artery hypertension
 - Monitor for aortic insufficiency
 - Monitor for bleeding
 - Catheter insertion site
 - Retroperitoneal
 - Surgical valvotomy
 - Monitor for hypertension
 - LV function usually preserved
 - Often hyperdynamic due to long standing stenosis and high afterload results in hypertension
 - Low cardiac output syndrome (LCOS)
 - May be prolonged due to the hypertrophied LV
 - Positive pressure ventilation may reduce LV afterload and improve cardiac output
 - Monitor for arrhythmias and changes in coronary artery perfusion
 - Left bundle branch block or complete heart block
• ST segment changes
• Ventricular arrhythmia
 o Surgical aortic valve replacement
 ▪ Valve selection depends on:
 • Patient age
 • Size of aortic valve annulus
 ▪ Anticoagulation necessary if a prosthetic mechanical valve used (See both Ped/Neo and Adult Anticoagulation Guidelines.)
 o Ross Procedure – (Pulmonary Autograft)
 ▪ Increased bleeding risk
 • Re-exploration may occur in a small amount of patients
 • Dehiscence of aortic root anastomosis
 ▪ Increased risk of arrhythmias
 • Complete heart block
 o May require a permanent pacemaker
 • Compromised coronary artery perfusion
 o Surgical Repair of Subvalvular Stenosis
 ▪ Increased sub aortic resection
 • Increased risk for third degree/complete heart block
 • Increased risk for significant ventricular dysfunction
 ▪ Inadvertent creation of a ventricular septal defect
 ▪ Surgical disruption of mitral valve apparatus and resultant mitral regurgitation
 o Surgical Repair of Supravalvular Stenosis
 ▪ Risk of pulmonary hypertension
 ▪ Associated CHD in genetic syndromes such as William’s syndrome
 • Main pulmonary artery stenosis
 • Branch pulmonary artery stenosis
 • Risk of suicide RV if relief supravalvar AS results in suprasystemic RV pressure due to unrelieved PA stenosis

Long-term problems/complications and routine care
• Endocarditis prophylaxis is necessary
• Patients with bicuspid aortic valve are at risk for progressive aortic root dilation and aortic dissection, even in the absence of stenosis or significant regurgitation
 o Most patients with aortic dissection have hypertension, so medical management of hypertension is crucial
 o Careful surveillance with serial echocardiograms is warranted to detect aortic root dilation
• Long-term monitoring
 o Aortic valve function and gradient
 o Development of LV hypertrophy or dysfunction
• Anticoagulation (See both Ped/Neo and Adult Guidelines for Anticoagulation)
 o Prosthetic mechanical valve replacement
Bioprosthetic valve replacement may require anticoagulation with added risk factors
 - Atrial fibrillation
 - LV dysfunction
 - Hypercoagulable state

Recommendations during pregnancy
 - See Adult Guidelines on Pregnancy in Adult Congenital Heart Disease for more specific considerations and anticoagulation management

Following intervention, either surgical or by catheterization, patients must be monitored for re-stenosis or development of valve regurgitation

References:

12/2015